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Why Multi-Core Processors?

Processor development trend
• Increasing overall performance by integrating multiple cores

Embedded systems: Actively adopting multi-core CPUs
• Automotive: 

– Freescale i.MX6 4-core CPU

– NVIDIA Tegra K1 platform

• Avionics and defense:
– Rugged Intel i7 single board computers

– Freescale P4080 8-core CPU
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Shared Hardware: Multicore Memory System
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Cache Interference Across Cores
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Bank Interference Across Cores
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Impact of Memory Interference

• 1 attacker   Max 5.5x increase
• 2 attackers  Max 8.4x increase
• 3 attackers  Max 12x increase
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Cache / Bank Partitioning (Coloring)
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Cache / Bank Partitioning (Coloring)
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Cache / Bank Partitioning (Coloring)

Cache

Main Mem

Set associativity

16 15 14 13 12Address bits

Cache Index

6

Cache sets
One page

Vi
rt

ua
l P

ag
es



11

Cache and Bank Address Bits
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Coordinated Cache and Bank Partitioning
(Private Partitions)
Avoid conflicting color assignments 

Take advantage of different conflict behaviors
• Banks can be shared within same core but not across cores
• Cache cannot be shared within or across cores

Take advantage of sensitivity of execution time to cache
• Task with highest sensitivity to cache is assigned more cache
• Diminishing returns taken into account

Two algorithms explored
• Mixed-Integer Linear Programming
• Knapsack
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Experimental Results
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Shared Bank Partitioning

Explicitly considers the timing characteristics of major DRAM 
resources
• Rank/bank/bus timing constraints (JEDEC standard)
• Request re-ordering effect

Bounding memory interference delay for a task
• Combines request-driven and job-driven approaches

Software DRAM bank partitioning awareness
• Analyzes the effect of dedicated and shared DRAM banks

Task’s own memory requests Interfering memory requests 
during the job execution
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DRAM Organization
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Memory Controller
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Memory Scheduling Policy

• FR-FCFS: First-Ready, First-Come First-Serve
– Goal: maximize DRAM throughput  Maximize row buffer hit rate
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Memory access interference occurs at both bank and channel schedulers
• Intra-bank interference at bank scheduler
• Inter-bank interference at channel scheduler

1. Bank scheduler
• Considers bank timing constraints
• Prioritizes row-hit requests
• In case of tie, prioritizes older requests

2. Channel scheduler
• Considers channel timing constraints
• Prioritizes older requests
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DRAM Bank Partitioning

• Prevents intra-bank interference by dedicating different 
DRAM banks to each core
– Can be supported in the OS kernel
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Bounding Memory Interference Delay

1. Request-Driven 
Bounding

2. Job-Driven 
Bounding

Response-Time Based 
Schedulability Analysis 
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Response-Time Test

• Memory interference delay cannot exceed any results from 
the RD and JD approaches
– We take the smaller result from the two approaches 

• Extended response-time test
Classical iterative response-time test

Request-Driven (RD)
Approach

Job-Driven (JD)
Approach
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Experiment Severe Memory Interference

• Private DRAM Bank

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264
0

100

200

300

400

500

N
or

m
. R

es
po

ns
e 

Ti
m

e 
(%

)

Observed
Predicted

4.1x increase  DRAM bank partitioning 
helps reducing the memory interference

Our analysis enables the quantification of the benefit of DRAM bank partitioning



22

Non-Severe Memory Interference

• Private DRAM Bank
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Implementation

Cache and Bank Partitioning implemented in Linux/RK
• Associates Resource Reservations to Linux Threads

– Memory reservation
– Cache reservation
– CPU reservation
– … 

“Portable” Kernel Module
• Hooks into on-demand page allocation
• At boot time create large memory reserve

– Pages are classified in cache and bank colors
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Model Problem

Fixed distance

Ball-Following: Keep fixed distance as 
ball moves around

Ball-following Controller
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Memory interference
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Experimental Results (1)
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Experimental Results (2)

Deadlines misses at 0.2. only 195 out of 279 frames processed (30% loss)
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Experimental Results (3)

No deadline misses. Processing below 0.2 s interarrival (period)
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Concluding Remarks

Multicore processor challenges previous results in real-time systems
• Interference from shared hardware

– Cache, Memory banks, Memory bus

Leads to less usable processing capacity
• 1200% increase in a four core machine (92% reduction from single core)

Our approach
• Coordinated private partitions for cache and memory
• Shared bank partitions 
• Implemented in Linux/RK

Experimental results for model avionics application
• Protects control algorithm from interference
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